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Abstract—This paper analyzes the estimation delay in a high gain
observer, where the state estimates may lag behind the actual states due
to the observer’s non-zero phase response. The paper proves that, for
a slowly time-varying system subject to bounded noises, the estimation
delay depends on the observer gain, but is independent of the variations
of system parameters. Rather than estimating the delay, a novel method
is proposed to calculate the delay from the observer’s phase response.
In terms of system identification, the delay is compensated by aligning
other measurements with the lagged estimate so that they have the same
lag. The simulation results of an aero engine model show significant
improvements in estimation. On one hand, the proposed approach
improves the estimation accuracy, and on the other hand, it removes
the assumption of zero delay and gives a new insight into the high-gain
observer design.

Index Terms—High-gain observer, state estimation, parameter varia-
tion, time delay

I. INTRODUCTION

In many industrial processes, it is common that the system param-
eters vary due to aging and abrasion. For the purpose of condition
monitoring and optimal control, it is important to have accurate
knowledge of the parameter variations. For multiple-input multiple-
output (MIMO) systems, some methods have been developed to
estimate the parameter variations. Examples are the explicit param-
eter identification methods (e.g. n4sid [1], iterative gradient-based
search method [2]) and observer-based model reference estimation
algorithms (e.g. augmented observer [3], adaptive observers [4], [5],
[6], and disturbance observer [7]).

As an augmented observer, a high gain observer (HGO) was
recently proposed for fault estimation in [8] and then extended
to estimate the parameter variations [9]. Under the assumption of
bounded noises, the basic idea of the HGO-based estimation is
the introduction of a new variable, referred to as “disturbance”
that linearly depends on the concerned parameter variations and is
augmented into the system state vector. Thus an augmented observer
is designed to estimate both the system state and the disturbance
simultaneously. Then the parameter variations are identified from
the estimates of state and disturbance variables within an ARX
(AutoregRessive eXogenous) framework [9]. In HGO, a high gain is
chosen so that the bounded noises are significantly attenuated making
the state/disturbance estimation errors as small as desired [8].

The identification performance of HGO depends on how good the
disturbance estimate is. Although the estimation error, in terms of
amplitude, can be made as small as desired by selecting a very
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high gain [8], [9], a time delay between the “actual” disturbance and
its estimate may appear, due to the non-zero phase response of the
observer. It is particularly true when a persistent excitation input is
used for identification purpose. As proved in this paper, the parameter
estimation error caused by the delay can make the estimation of
parameter variations biased. The problem of delay was mitigated by
using a very high gain (e.g. in the order of 109) [9], which reduces the
delay to an ignorable level, but increases the computation complexity
and encounters the problems of numerical instability.

Time Delay Estimation (TDE) [10] might be a solution. However,
it is worth keeping in mind that, as a prediction-error identification
method, the TDE may result in a combination of “wrong” delay and
parameters, due to the fact that a wrong combination may give the
best model approximation [11] [12] [13]. This often happens in non-
integer time delay and/or low signal-to-noise ratio (SNR) scenarios.
In the HGO, the time delay is nonlinear when the phase response
is nonlinear and the state/disturbance estimation errors lead to a low
SNR, which makes the TDE harder.

In contrast to estimating the delay, this paper proposes a method
to calculate the delay of a given HGO. The delay is proved to be
dependent on the observer gain, but be invariant to the parameter
variations. This property enables a new way to mathematically and
accurately calculate the delay in the frequency domain. As a result,
the delay can be accurately aligned to reduce its impacts on the
parameter identification. The HGO is formulated firstly in section
(II) and the properties of estimation delay are analyzed in section
(III), where it is proved that the delay is independent of parameter
variations. In section (IV), a novel estimation scheme is proposed,
where the delay is compensated (in the sense of identification) by
lagging other variables by the same delay such that all the variables
are aligned. As demonstrated in section (V), the application to a gas
turbine engine model identification verifies the existence of estimation
delay. The proposed delay alignment significantly improves the
identification performance.

II. HIGH-GAIN OBSERVER DESIGN

A. High gain observer for state and disturbance estimation

Consider a continuous system described by{
ẋ(t) = (A0 +∆A)x(t) + (B0 +∆B)u(t) + ωi(t)
y(t) = Cx(t) + ωo(t)

(1)

where x ∈ Rn is the state, u ∈ Rm the input, y ∈ Rp the output,
ωi(t) ∈ Rn and ωo(t) ∈ Rp are the unknown-but-bounded input
and output noises, respectively. A0, B0 are known matrices of the
nominal model, ∆A and ∆B are the parameter variations to be
identified. By introducing a new variable

d(t) = ∆Ax(t) + ∆Bu(t), (2)

the system can be rewritten as{
ẋ(t) = A0x(t) +B0u(t) + d(t) + ωi(t)
y(t) = Cx(t) + ωo(t)

. (3)
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In this study, ḋ(t) is assumed to be bounded representing that ∆A
and ∆B are slowly time-varying. The new variable d(t) is referred
to as “disturbance” to represent the parameter variations [∆A,∆B].
Interpreting x(t) and u(t) as the inputs and d(t) as the output, the
disturbance model (2) is a static 2-input-1-output ARX model. Since
u(t) is known, if d(t) and x(t) can be estimated, then [∆A ∆B]
can be obtained. A high-gain observer (HGO) is recently proposed
for estimating x(t) and d(t) simultaneously [8] [9].

Proposition 1: Denote x̄T (t) = [xT (t) dT (t) ωT
o (t)] ∈ R2n+p

and Ā =

[
A0 In 0
0 0n 0
0 0 −Ip

]
, B̄ =

[
B0

0n×m
0p×m

]
, C̄ = [C 0p×n Ip ], Ē =[

In 0 0
0 In 0
0 0 0p×p

]
, Ḡ =

[
In

0n×n
0p×n

]
, H̄ =

[
0n×n

In×n
0p×n

]
, N̄ =

[
0n×p

0n×p

Ip

]
, system

(3) can be augmented into a descriptor system given by{
E ˙̄x(t) = Āx̄+ B̄u(t) + Ḡωi(t) + H̄ḋ(t)− N̄ωo(t)
y(t) = C̄x̄(t).

(4)

and its corresponding augmented observer can be formed as{
Sξ̇(t) = (Ā− K̄C̄)ξ(t) + B̄u(t)− N̄y(t)
ˆ̄x(t) = ξ(t) + S̄−1L̄y(t)

(5)

where S̄ = Ē + L̄C̄. Note that K and L ∈ R(2n+p)×n are the gain
matrices to be designed.
For more details of the derivation, it is suggested to refer to [9] and
[8]. As proved in [8], if (A0, C) is observable, the augmented system
is observable if and only if

rank

[
A0 In
C 0

]
= 2n. (6)

When condition (6) is met, a stable high-gain observer (5) exists
with the gain matrix

K̄ = S̄P̄−1C̄T , (7)

where P̄ is solved from the Lyapunov equation−(µI+ S̄−1Ā)T P̄ −
P̄ (µI + S̄−1Ā) = −C̄T C̄ with µ > 0 satisfying the real part
R[λi(S̄

−1Ā)] > −µ,∀i ∈ {1, 2, ..., 2n + p}. The state x and
disturbance d can now be estimated simultaneously as x̂(t) =
[In 0n 0n×p]ˆ̄x(t) and d̂(t) = [0n In 0n×p]ˆ̄x(t). For the sake
of notation, time index t may be dropped in the following textual
description.

B. Estimation of Parameter variations

Define estimation errors e(t) = x̄(t)− ˆ̄x(t), ex(t) = x(t)− x̂(t)
and ed(t) = d(t) − d̂(t), substituting x = x̂ + ex and d = d̂ + ed
into (2) gives

d̂(t) = ∆Ax̂(t) + ∆Bu(t) + ∆Aex(t)− ed(t) (8)

Here, (d̂, x̂, u) is regarded as the observation of the ARX model and
∆Aex(t) − ed(t) is the observation noise. The impacts of wi and
wo are represented by ex(t) and ed(t).

Theorem 1: If the original plant (1) is observable and condition (6)
is met, given bounded noises ωi and ωo, there exists an observer (5)
and associated gain matrix K̄ (7) that can make the steady estimate
errors ex(t) and ed(t) as small as desired.

Proof: By comparing our system (4) with the system model in
[8] and interpreting d(t) (2) as the fault signal, it is easy to verify
that the value of α, Ba and Da in [8] are α = 0, Ba = In and
Da = 0. Thus, if condition (6) is met, according to Theorem 1 in
[8], then a gain matrix K̄ exists and the estimation error is bounded
and the bound can be made as small as desired.

Theorem 2: If both ed(t) and ex(t) tend to desired small values as
time approaches infinity, minimizing the mean square error of model

(8) makes [∆Â,∆B̂] approach [∆A,∆B], but subject to a bias of
up to γβ

∑M
k=1 |ei(t)|

M
.

Proof: From the purpose of analysis, the disturbance model (8)
in matrix form can be rewritten as a set of multi-input-single-output
submodels in vector form:

d̂i(t) = φT (t)θ∗i + ei(t) i = {1, 2, . . . , n} (9)

where φ(t) =
[

x̂(t)
u(t)

]
is the regression vector, θ∗i = [∆Ai ∆Bi]

T ∈
R1×(n+m) is the true value to be found, [∆Ai ∆Bi] represents the
i-th row of the matrix [∆A ∆B] and ei(t) = ∆Aiex(t) − ed,i(t),
where ed,i(t) is the i-th element of ed(t). The submodel (9) is a zero
order (n + m)-input-one-output ARX model and can be identified
by using the Least Square Estimation (LSE) in the discrete domain.
Note that the order of output di(t) is zero.

As the observer works in the continuous time domain, a sampling
process has to be applied to the continuous data [d̂(t), x̂(t), u(t)]
before identification. Assume M sampled data pairs [d̂(kT ), û(kT ),
u(kT )], k = 1, 2, ...,M have been collected at a sampling interval
of T second, the LSE method is to find an optimal θ̂i by minimizing
the mean squared error function V (M)(θi) = 1

M

∑M
k=1(d̂i(KT ) −

φT (kT )θi)
2. The parameter estimated by the LSE is

θ̂
(M)
i = R(M)−1

[ M∑
k=1

φ(kT )[φ(kT )T θ∗i + ei(kT )]
]

= θ∗i +R(M)−1
[ M∑
k=1

φ(kT )ei(kT )
] (10)

where R(M) =
∑M

k=1 φ(kT )φ
T (kT ). Therefore, the estimation

error θ̃i is

θ̃i = θ̂
(M)
i − θ∗i = R(M)−1

[ M∑
k=1

φ(kT )ei(kT )
]

(11)

and the mathematical expectation of θ̃i is

E(θ̃i) = E
[
R(M)−1

M∑
k=1

φ(kT )ei(kT )
]

(12)

Note that ei is the estimation error depending on the variable
u and hence φ. Further, both the estimate x̂ and the error ei are
correlated with the input noises ωi hence φ correlates with ei.
Therefore E

[∑
φ(kT )ei(kT )

]
is not zero. However, u is a bounded

deterministic signal and the input/output noises are bounded as well.
Hence φ and R(M) are bounded matrices. Following the terminology
introduced in [14], assuming |φ| < β and ||R(M)−1|| < γ and
according to the definition of matrix norm, the absolute value of the
expectation of θ̃i is governed by

E(|θ̃i|) = E(||R(M)−1|| · |
M∑
k=1

φ(kT )ei(kT )|)

< E(γ

M∑
k=1

β|ei(kT )|)

(13)

where || · || denotes matrix’s Euclidean norm and | · | denotes vector
Euclidean norm. Thus

E(|θ̃i|) < γβ

∑M
k=1 |ei(kT )|

M
. (14)

According to Theorem 1, ex and ed can be made as small as
desired by selecting a gain matrix K̄ appropriately. Hence ei(t) is as
small as desired. Therefore, E(|θ̃i|) can be made as small as desired,
but not necessarily zero. It implies that minimizing the mean square
error V (M)(θi) of the ARX model (9) makes [∆Â,∆B̂] approach
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to [∆A,∆B], but a bias of up to γβ
∑M

k=1 |ei(kT )|
M

may exist. This
completes the proof.

C. Time-delay of HGO

Theorem 1 shows that, in the steady state, [d̂, x̂] approaches to
[d, x] asymptotically. Thus, ei(t) approximates to zero and the bias
of the estimation of [∆Ai ∆Bi] is close to zero. However, due to the
dynamic response of the HGO, an estimation delay may exist between
a variable and its estimate and it depends on the response speed of
the observer. The delay may cause a relatively large ei(t) with the
consequence of a significant bias. In particularly, in order to cover
the whole frequency range of interest. the parameter identification
usually requires persistent excitation rather than a step signal. Thus
an obvious delay will appear.

More specifically, the HGO can be regarded as a filter with input
d(t) and output d̂(t). And the dynamics of the HGO can be described
by a transfer function matrix (TFM) F (s) with phase response
Φ(jω). Then, the value

τ(ω) = −Φ(jω)

ω
(15)

gives the “time delay” between the input and output signals. τ(ω)
is also referred to as phase delay, pure delay or transport lag.
Generally, τ(ω) is a function of frequency ω and may vary with
respect to frequency. According to our preliminary experiments, the
delay between x(t) and x̂(t) is tiny and negligible. Thus only the
disturbance’s delay is considered in this note.

III. TIME DELAY IN DISTURBANCE ESTIMATION

In order to derive the mathematical expression of τ(ω) regarding
d(t) to d̂(t), some TFMs of the HGO are first formulated, then the
relationship between d(t) and d̂(t) is presented.

From the augmented system (5), the TFM Gd̂u(s) relating u(t) to
d̂(t) can be obtained:

Gd̂u(s) = G1(s) +G2(s)Gyu(s) +G3(s)Gẏu(s). (16)

where

G1(s) = [0n In 0n×p] · [sS̄ − (Ā− K̄C̄)]−1B̄ (17)

G2(s) = [0n In 0n×p] · (sS̄ − (Ā− K̄C̄))−1K̄ (18)

G3(s) = [0n In 0n×p] · (sS̄ − (Ā− K̄C̄))−1L̄ (19)

Gyu(s) = C[sI − (A0 +∆A)]−1(B0 +∆B) (20)

Gẏu(s) = C(A0 +∆A)[sI − (A0 +∆A)]−1(B0 +∆B)

+ C(B0 +∆B)
(21)

Recalling the plant (1) with disturbance d(t) = ∆Ax(t)+∆Bu(t),
it is easy to verify that the TFM Hdu(s) relating u(t) to d(t) is

Hdu(s) = ∆A[sI − (A0 +∆A)]−1(B0 +∆B) + ∆B (22)

For the sake of notation, some abbreviations are first defined as
Λ = (sI −A0), Ψ = [sI − (A0 +∆A)] and

F (s) = G2(s)CΛ−1 +G3(s)[CA0Λ
−1 + C]. (23)

It is easy to verify F (s) is a n × n TFM. In this subsection, a
constructive proof of Gd̂d(s) = F (s) is presented, where Gd̂d(s) is
the TFM relating d(t) to its estimate d̂(t). Before giving the main
theorem, two lemmas are proved as follows.

Lemma 1: Given the plant (A0, B0, C), if (A0, C) is observable
and condition (6) is met, then H1(s) = 0. Here H1(s) is a TFM

H1(s) = G1(s) +G2(s)[CΛ−1B0] +G3(s)[CA0Λ
−1B0 + CB0]

Proof: This can be proved by analyzing the dynamics of the
high-gain observer. The plant system (with parameter variations) and
its associated observer can be decomposed as shown in Figure 1,
where the plant output y(t) is split into two parts: ym(t) from the

High-gain 

Observer

unmodelled dynamics
(  A,   B)

 nominal model    
(A0, B0, C)

d(t)
^

d(t)
y(t)

y (t)u

d (t)u

d   t
^
m

u(t)

y (t)  
m

y (t)  
u

Plant with uncertainties

d (t)
^

u

Observer

d  (t)
m

y  (t)  m

( )

Fig. 1. Decomposition of the plant and its high-gain observer.

nominal model (A0, B0, C) and yu(t) from the unmodeled dynamics.
The same applies to d(t).

y(t) = ym(t) + yu(t), d(t) = dm(t) + du(t) (24)

where y(t) is measurable, and d(t) is unmeasurable. Note that, since
no model uncertainty exists within the nominal model (A0, B0, C),
dm(t) is always zero dm(t) ≡ 0. According to the additionality
of linear systems, the outputs of the high-gain observer can be
decomposed in a similar way:

ŷ(t) = ŷm(t) + ŷu(t), d̂(t) = d̂m(t) + d̂u(t) (25)

where d̂m(t) is the estimate of dm(t) and d̂u(t) is the estimate of
du(t).

Observe that the terms in H1(s) have a special meaning: CΛ−1B0

is the TFM relating u(t) to ym(t) and CA0Λ
−1B0 + CB0 is the

TFM relating u(t) to ẏm(t). According to (16), it can be verified
that H1(s) is exactly the TFM relating u(t) to d̂m(t):

d̂m(s) = H1(s)u(s) (26)

where d̂m(s) and u(s) are s-transforms of d̂m(t) and u(t), respec-
tively.

Furthermore, if (A0, C) is observable and the condition (6) is
satisfied, then the designed observer is stable and the disturbance
estimate d̂(t) is asymptotically stable. With the decomposition as
shown in Figure 1, it can be stated that d̂m(t) approaches dm(t)
asymptotically. Since dm(t) ≡ 0, whatever the values of u(t) and
[∆A ∆B] are, d̂m(t) is always zero. That is

H1(s)u(s) ≡ 0 for any u(s). (27)

It implies that d̂m(t) has nothing to do with u(t) and (27) is satisfied
if and only if H1(s) is a zero matrix.

Lemma 2: Given the plant (A0, B0, C), if (A0, C) is observ-
able and condition (6) is met, then G1(s) + G2(s)[CΨ−1B0] +
G3(s)[CA0Ψ

−1B0 + CB0] + G3(s)[C∆AΨ−1B0] = F (s) ·
∆A−1Ψ−1B0 and G2(s)CΨ−1∆B + G3(s)C[A0Ψ

−1 + I]∆B +
G3(s)C∆AΨ−1∆B = F (s) · (∆AΨ−1∆B +∆B).
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The proofs of Lemma 2 can be done simply by algebraic manip-
ulations.

Theorem 3: Given a system (A0, B0, C) with parameter variation
[∆A, ∆B] and the corresponding high-gain observer (5), for any
value of [∆A, ∆B], the TFM Gd̂d(s) relating d(t) to d̂(t) is
equivalent to F (s)

Gd̂d(s) = F (s), (28)

and the time delay τ between d(t) and its estimate d̂(t) is independent
of [∆A,∆B].

Proof: Substituting Ψ = sI − (A0 + ∆A), Λ = sI − A0 into
Gd̂u(s) (16) gives

Gd̂u(s) =G1(s) +G2(s)CΨ−1B0 +G2(s)CΨ−1∆B

+G3(s) · C[A0Ψ
−1 + I]B0 +G3(s) · C∆AΨ−1B0

+G3(s) · C[A0Ψ
−1 + I]∆B +G3(s) · C∆AΨ−1∆B

(29)

According to Lemma 2, it is easy to verify that

Gd̂u(s) = F (s)·(∆A−1Ψ−1B0)+F (s)·(∆AΨ−1∆B+∆B) (30)

According to the definition of Hdu(s) as given by (22) and the
definition of Ψ, the equation above becomes Gd̂u(s) = F (s)·Hdu(s).
Then, one has

d̂(s) = Gd̂u(s)u(s) = F (s)Hdu(s)u(s) = F (s)d(s) (31)

Equation (31) indicates that F (s) is the TFM relating d(t) to d̂(t),
that is Gd̂d(s) = F (s).

From the definition of F (s) in (23), it is easy to verify that
Gd̂d(s) is determined by G2(s), G3(s) and (A0, B0, C) only. Since
both G2(s) and G3(s) are independent of [∆A,∆B], Gd̂d(s) does
not depend on [∆A,∆B] as well. Consequently, the time delay τ
between d(t) and its estimate d̂(t) is also independent of [∆A,∆B].
This completes the proof of Theorem 3.

The TFM F (s) is a n×n matrix and can be expressed in terms of
magnitude response matrix M(s) and phase response matrix Φ(s).
Ideally, M(s) is an identity matrix and Φ(s) is a zero matrix. In
practice, M(s) approximates to an identity matrix, thus d̂i(t) is
dominantly determined by di(t). In the calculation of the delay
τ , only the diagonal elements of Φ(s) are considered. Substituting
s = j ω into Φ(s), the delay function τi(ω) is

τi(ω) = −Φii(jω)

ω
(32)

where τi(ω) is the delay between d̂i(t) and di(t) at frequency ω,
and Φii the i-th diagonal element of Φ.

Remark 1. Theorem 3 implies that the time delay τi(ω) is invariant
under different values of [∆A,∆B]. Hence, it is practical to compute
the delay by assigning an arbitrary value to [∆A,∆B], and the
calculated delay is applicable to any values of [∆A,∆B].

Remark 2. The time delay τi(ω) computed from the phase
response matrix Φ(s) is more accurate than that of TDE methods.
Furthermore, Theorem 3 gives the TFM F (s) which make it possible
to design a phase-shifter to lag other variables by the same delay.

Remark 3. The phase response can be used as a criteria to evaluate
the performance of the high-gain observer. Generally, Φ(jω) and
τ(ω) vary as the frequency changes. From the perspective of observer
design, an desired observer is one with zero delay or a linear Φ(jω)
over the frequency range of interest.

IV. ESTIMATION OF PARAMETER VARIATIONS WITH DELAY

ALIGNMENT

In the context of parameter identification, the purpose of delay
alignment is to align the data pairs [x̂T (t) uT (t) d̂Ti (t)] with
respect to [xT (t) uT (t) dTi (t)] in the ARX model (9). Since d̂i(t)
has been lagged behind di(t) by τi(ω), either leading d̂i(t) or
lagging [x̂T (t), uT (t)] by τi(ω) can align the data pairs. Due to
the causality of the practical system, leading d̂(t) is impossible. The
fundamental of the proposed delay alignment approach is to make use
of a set of “phase-shift” filters {Li(s)} whose phase responses are
equivalent to {Φii(s)} respectively. By this way, x̂T (t) and uT (t)
are delayed by the same time τi. Thus, the data pairs are aligned as
[x̂T (t− τi) u

T (t− τi)], d̂
T
i (t)].

Fig. 2. The scheme of delay alignment and parameter estimation

The key step in delay alignment is to choose the coefficients of
the compensation filter Li(s) properly to obtain the desired phase-
delay frequency response. Since the TFM relating d̂(t) to d(t) has
been given in Theorem 3, one straightforward choice is to use the
diagonal elements of F (s) as {Li(s)}. That is Li(s) = Fii(s).

Figure 2 illustrates this scheme. As the plant and HGO work in
the continuous time domain and the LSE is a discrete identification
method, a sampling process is applied on the aligned signals x̂(t−τi),
u(t− τi) and d̂(t). The LSE uses the sampled data pairs to estimate
[∆A,∆B]. As shown in Theorem 2, the ARX model to be identified
is converted into a set of zero order (n+p)-input-single-output ARX
models.

V. SIMULATION AND RESULTS

In this section, the proposed scheme is applied to a simulated gas
turbine engine with real input signal collected at the engine test bed.
In order to illustrate the time delay clearly, a noise free case is first
presented. A reduced third order linear model of a turbojet engine is
taken from [15] and represented with the nominal coefficient matrices
A0 =

[−112.27 52.92 42.24
−48.120 0.0 47.41
2.838 −1.258 −4.09

]
, B0 = [32.42 0.6685 0.0]T and C

is an identity matrix. These coefficient matrices [A0 B0] are accurate
when the engine is in healthy condition. Due to various reasons (e.g.
aging), ∆A and ∆B become non-zero matrices. In the simulation,
the parameter matrices change at 10 second as follows:

∆A =

−11.227 5.292 4.224
−5.900 3.145 4.741
−5.830 −3.90 5.23

 ,∆B =

6.4841.534
4.00

 , t > 10s

A. Time Delay Analysis

In order to illustrate the estimation delay, a multi-sine wave over
frequency Ω = [0, 5] Hz is fed to the engine model as the input.
The time delays τi(ω) (32) calculated by the proposed algorithm



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 5

are illustrated in the left column of Fig. 3. It shows that the delays
decrease in a non-linear fashion as the frequency increases. Over the
frequency [0, 2] (Hz), τ1(ω) is 6.48ms, and both τ2(ω) and τ3(ω)
are around 6.0ms.

The simulation results of the disturbance estimation delay are
shown in the right column of Fig. 3. The values of the delays
(τ1 = 6.5 ms, τ2 = 6.0 ms and τ3 = 6.0ms, read from the
simulation) match the delays calculated from Φii(ω), (i = 1, 2, 3).

B. Noise-corrupted case with real input data

In this section, the real data with main energy over the frequency
range of [1, 2] Hz is used as the input. The system is assumed
subjected to both input noise ωi = 0.4sin(20t) + ni(t) and small
output noise ωo = 0.02sin(5t)+no(t), where ni(t) is a white noise
with zero mean and the variance of 0.001; no(t) is a white noise
with zero mean and the variance of 0.0001.

The identified parameter variations are shown in Fig. 4 (with
delay alignment) and Fig. 5 (without delay alignment). The proposed
delay alignment shows good estimation results and, contrarily, the
estimation approach without delay alignment fails. In Fig. 5, the
variations and errors are so large that the method without delay
alignment does not make any sense.

Compared with the results in [9], where no delay alignment
technique was used and a very high gain had to be adopted (at
the order of 1010) to achieve an acceptable result, the proposed
delay alignment method is able to achieve a similar performance
at a relatively small gain (at the order of 106). The advantage is
that a smaller gain is numerically more stable and provides better
computation efficiency in practice.

0 5 10 15 20 25 30 35

−10

−5

0

5

10
(a) Estimates of [∆A ∆B] (with delay alignment)

Time (second)

M
ag

ni
tu

de

0 5 10 15 20 25
−10

−5

0

5

10
(b) Estimation errors of [∆A ∆B] (with delay compensation)

Time (second)

M
ag

ni
tu

de

Fig. 4. The parameter variation [∆Â,∆B̂] estimated with delay alignment
(using real input and corrupted by noises)

The estimated [∆Â|∆B̂] are listed in the second column of
Table I. For comparison, n4sid is also evaluated, where only the
input-output pairs [u, y] are used to identify the parameters. Then
the parameter variations are calculated as the parameter estimates
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Fig. 5. The parameter variation [∆Â,∆B̂] estimated without delay alignment
(using real input and corrupted by noises)

minus their known nominal values. The third column shows the
estimation errors in percentage. The percentage error is defined as
|(aij − âij)/aij | × 100% and |(bj − b̂j)/bj | × 100%, where aij ,
bj are the elements of ∆A, ∆B and âij and b̂j are their estimates,
respectively. It can be seen that the proposed delay alignment scheme
improves the parameter identification performance.

VI. CONCLUSION

Due to the dynamics of HGO and its nonzero phase response,
the time delay appears which affects the performance of parameter
identification. This paper analyzes the properties of disturbance
estimation in the HGO and proves that the estimation delay is
independent of the parameter variations. Thus the delay can be
computed accurately from the TFMs and be compensated (in the
sense of identification) by aligning all the variables by the same delay.
When the delay is presented in the HGO, the proposed algorithm
improves the performance significantly. This has been verified by the
simulation results on a gas turbine engine model.
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